\[
a = 1, \quad b = 2, \quad c = 3
\]
\[
\text{Sy}\pi_n(n) = \frac{(b^a) \cdot (c^b) \cdot (c^b + a)}{\left( \frac{(c^b + a)^c \cdot ((c^b + a)^c \cdot b + c + a)}{b^c \cdot c^c \cdot (c^b + a) + b} \right) \cdot \left( a \cdot (c^c + a) \cdot n \cdot (c^b + a)^{c^b} \cdot (b \cdot a \cdot c \cdot b^2 \cdot (c^b + a)^{b+c}) \right)}
\]